Chapter 8-1



Carrier concentrations representative of metals, semimetals, and semicon-
ductors are shown in Fig. 1. Semiconductors are generally classified by their
electrical resistivity at room temperature, with values in the range of 1072 to
10° ohm-cm, and strongly dependent on temperature. At absolute zero a pure,
perfect crystal of most semiconductors will be an insulator, if we arbitrarily de-
fine an insulator as having a resistivity above 10'* ohm-cm.

Devices based on semiconductors include transistors, switches, diodes,
photovoltaic cells, detectors, and|thermistors ﬁ%%ﬂs%% may be used as single
circuit elements or as components of integraté circuits. We discuss in this
chapter the central physical features of the classical semiconductor crystals,
particularly silicon, germanium, and gallium arsenide.

Some useful nomenclature: the semiconductor compounds of chemical
formula AB, where A is a trivalent element and B is a pentavalent element, are
called III-V (three-five) compounds. Examples are indium antimonide and
gallium arsenide. Where A is divalent and B is hexavalent, the compound is
called a II-VI compound; examples are zinc sulfide and cadmium sulfide. Silicon
and germanium are sometimes called diamond-type semiconductors, because
they have the crystal structure of diamond. Diamond itself is more an insulator

rather than a semiconductor. Silicon carbide SiC is a IV-IV compound.
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Figure 1 Carrier concentrations for metals, semimetals, and semiconductors. The semiconductor

range may be extended upward by increasing the impurity concentration, and the range can be ex-
tended downward to merge eventually with the insulator range.



A highly purified semiconductor exhibits intrinsic conductivity, as distin-
guished from the impurity conductivity of less pure specimens. In the intrin-

sic temperature range the electrical properties of a semiconductor are not
essentially modified by impurities in the crystal. An electronic band scheme
leading to intrinsic conductivity is indicated in Fig. 2. The conduction band is
vacant at absolute zero and is separated by an energy gap E, from the filled
valence band.

The|band gap|is the difference in energy between the lowest point of the
conduction band and the highest point of the valence band. The lowest point
in the conduction band is called the conduction band edge; the highest
point in the valence band is called the valence band edge.

As the temperature is increased, electrons are thermally excited from the
valence band to the conduction band (Fig. 3). Both the electrons in the con-
duction band and the vacant orbitals orlholes |left behind in the valence band

contribute to the electrical conductivity.



Energy

Figure 2 Band scheme for intrinsic conductivity in a semiconductor. At 0 K the conductivity is
zero because all states in the valence band are filled and all states in the conduction band are va-
cant. As the temperature is increased, electrons are thermally excited from the valence band to the
conduction band, where they become mobile. Such carriers are called|“intrinsic.”




1014

—

o
—
w

Ge /

1012

—

(@]
—
—

Electron concentration in carriers per cm®

|

S
T
=)

10°

200

Figure 3 Intrinsic electron concentration as a function o
(b) silicon. insi iti

215 230 245 260 275 290
Temperature, K

(a)

305

Electron concentration in carriers per cm?®

1014

—

)
—
w

—

()
—
o

|

(e
—
—

—t

(e
—
(=}

10°

275

300 325 350 375 400 425
Temperature, K

(b)

450

f temperature for (a) germanium and

tion. The intrinsic concentration at a given temperature is higher in Ge than in Si because the
energy gap is narrower in Ge (0.66 eV) than in Si (1.11 eV). (After W. C. Dunlap.)




BAND GAP

The intrinsic conductivity and intrinsic carrier concentrations are largely
controlled by Eg{kBT, the ratio of the band gap to the temperature. When this
ratio is large, the concentration of intrinsic carriers will be low and the
conductivity will be low. Band gaps of representative semiconductors are given
in Table 1. The best values of the band gap are obtained by optical absorption.

In a_direct absorption process the threshold of continuous optical ab-

sorption at frequency w, measures the band gap E, = fiw, as shown in Figs. 4a
and 5a. A photon is absorbed by the crystal with the creation of an electron

and a hole.




In the indirect absorption process in Figs. 4b and 5b the minimum
energy gap of the band structure involves electrons and holes separated by a

substantial wavevector k,. Here a direct photon transition at the energy of the
minimum gap cannot satisfy the requirement of conservation of wavevector,
because photon wavevectors are negligible at the energy range of interest. But
it a phonon of wavevector K and frequency () is created in the process, then
we can have

k(photon) =k, + K= 0 ; fio = E, + i) , h<< Eg

as required by the conservation laws. The phonon energy A} will generally be
much less than E,: a phonon even of high wavevector is an easily accessible
source of crystal momentum because the phonon energies are characteristi-
cally small (~0.01 to 0.03 eV) in comparison with the energy gap. If the tem-
perature is high enough that the necessary phonon is already thermally excited
in the crystal, it is possible also to have a photon absorption process in which
the phonon is absorbed.
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Figure 4 Optical absorption in pure insulators at absolute zero] [n (a) the threshold determines
the energy gap as E, = fiw,. In (b) the optical absorption is“weaker near the threshold: at

hw = E, + fi{) a photon is absorbed with the creation of three particles: a free electron, a free
hole, and a phonon of energy #{). In (b) the energy E,.,, marks the threshold for the creation of a
free electron and a free hole, with no phonon involved. Such a transition is called vertical; it is
similar to the direct transition in (a). These plots do not show absorption lines that sometimes are
seen lying just to the low energy side of the threshold. Such lines are due to the creation of a
bound electron-hole pair, called an exciton.
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Figure 5 In (a) the lowest point of the conduction band occurs at the same value of k as the highest
point of the valence band. A direct optical transition is drawn vertically with no significant change of
k, because the absorbed photon has a very small wavevector. The threshold frequency w, for absorp-
tion by the direct transition determines the energy gap E, = fiw,. The indirect transition in (b) in-
volves both a photon and a phonon because the band edges of the conduction and valence bands are
widely separated in k space. The threshold energy for the indirect process in (b) is greater than the
true band gap. The absorption threshold for the indirect transition between the band edges is at
fiw = E, + #Q), where Q is the frequency of an emitted phonon of wavevector K = —k,. At higher
temperatures phonons are already present; if a phonon is absorbed along with a photon, the thresh-
old energy is fiw = E, — #i{). Note: The figure shows only the threshold transitions. Transitions occur
generally between almost all points of the two bands for which the wavevectors and energy can be
conserved.




In the indirect absorption process in Figs. 4b and 5b the minimum
energy gap of the band structure involves electrons and holes separated by a

substantial wavevector k,. Here a direct photon transition at the energy of the
minimum gap cannot satisfy the requirement of conservation of wavevector,
because photon wavevectors are negligible at the energy range of interest. But
it a phonon of wavevector K and frequency () is created in the process, then
we can have

k(photon) =k, + K= 0 ; fio = E, + i) , h<< Eg

as required by the conservation laws. The phonon energy A} will generally be
much less than E,: a phonon even of high wavevector is an easily accessible
source of crystal momentum because the phonon energies are characteristi-
cally small (~0.01 to 0.03 eV) in comparison with the energy gap. If the tem-
perature is high enough that the necessary phonon is already thermally excited
in the crystal, it is possible also to have a photon absorption process in which
the phonon is absorbed.




Table 1 Energy gap between the valence and conduction bands

(i = indirect gap; d = direct gap)

E,, eV E,, eV

Crystal Gap 0K 300 K Crystal Gap 0K 300 K
S R e R AN
Diamond i 5.4 SiC(hex) i 3.0 s
Si i | 4 b7 1.11 Tc d 0.33 —_—
Ge i 0.744  0.66 HgTe? d —0.30

_aSn d 0.00 0.00 PbS d 0.286 0.34-0.37
InSb d 0.23 0.17 PbSe i 0.165 0.27
InAs d 0.43 0.36 PbTe i 0.190 0.29
InP d 1.42 1.27 CdS d 2.582 2.49
GaP i 2.32 2.2b CdSe d 1.840 1.74
GaAs d 1.52 1.43 CdTe d 1.607 1.44
GaSb d 0.81 0.68 SnTe d 0.3 0.18
AISb i 165 1.6 Cu,0 d 2.172 e

“HgTe is a semimetal; the bands overlap.



Optical absorption to determine the (direct) energy gap of InSb
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Figure 6 Optical absorption in pure indium antimonide, InSb. The transition is direct because

both conduction and valence band edges are at the center of the Brillouin zone, k = 0. Notice the
sharp threshold. (After G. W. Gobeli and H. Y. Fan.)




(E:Q 23 4oThe band gap may also be deduced froni the temperature dependence

of the conductivity or of the carrier concentration in the intrinsic range. The
(2) carrier concentration is obtained from measurements of the Hall voltage
(Chapter 6), sometimes supplemented by conductivity measurements(?’bEtical
measurements determine whether the gap is direct or indirect. The band
edges in Ge and in Si are connected by indirect transitions; the band edges in
InSb and GaAs are connected by a direct transition (Fig. 6). The gap in @Sn is

direct and is exactly zero; HgTe and HgSe are semimetals and have negative
gaps—the conduction and valence bands overlap.

EQUATIONS OF MOTION OF AN ELECTRON
IN AN ENERGY BAND

We derive the equation of motion of an electron in an energy band. We

look at the motion of a wave packet in an applied electric field. Suppose that

the wave packet is made up of wavefunctions assembled near a particular

wavevector k. The group velocity by definition is f = dw/dk. The frequency as-

sociated with a wavefunction of energy € by quantum theory is w = €/#, and so

L, = #1 de/dk or v=#"1V,ek) | (1)

The effects of the crystal on the electron motion are contained in the disper-
sion relation (k).




The work e done on the electron by the electric field E in the time
interval &t is

6e = —ekv, 8t . (2)
We observe that
e = (de/dk)ok = fv, 6k , (3)
using (1). On comparing (2) with (3) we have
6k = —(eE/h)bt (4)

whence #idk/dt = —eE.
We may write (4) in terms of the external force F as

dk _

ﬁdt

F . (5)

This is an important relation: in a crystal Adk/dt is equal to the external force
on the electron. In free space d(mv)/dt is equal to the force. We have not over-

thrown Newton’s second law of motion: the electron in the crystal is subject to
forces from the crystal lattice as well as from external sources.




The force term in (5) also includes the electric field and the Lorentz force
on an electron in a magnetic field, under ordinary conditions where the mag-
netic field is not so strong that it breaks down the band structure. Thus the

equation of motion of an electron of group velocity v in a constant magnetic
field B is

(CGS) *

where the right-hand side of each equation is the Lorentz force on the electron.
With the group velocity v = %™ 'grad,e, the rate of change of the wavevector is

dk e

e o X ’
(CGS) dt ﬁzc VkE B :

where now both sides of the equation refer to the coordinates in k space.

We see from the vector cross-product in (7) that in a magnetic field
an electron moves in k space in a direction normal to the direction of the gra-
dient of the energy €, so that the electron moves on a surface of constant
energy. The value of the projection kg of k on B is constant during the
motion. The motion in k space is on a plane normal to the direction of B, and
the orbit is defined by the intersection of this plane with a surface of constant

energ Z
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Physical Derivation of ik = F

We consider the Bloch eigenfunction ¢y belonging to the energy eigen-
value €, and wavevector k:

i, = §G) C(k + G) expli(k + G) - r] . (8)
The expectation value of the momentum of an electron in the Bloch state k is

P, = (k|-izV|k) = > #k + G)|Ck + G)]* = Ak + D, G|C(k + G)]*) ,
G G
(9)

using 2|C(k + G)|* = 1.

We examine the transfer of momentum between the electron and the lat-
tice when the state k of the electron is changed to k + Ak by the application
of an external force. We imagine an insulating crystal electrostatically neutral
except for a single electron in the state k of an otherwise empty band.




We suppose that a weak external force is applied for a time interval such
that the total impulse given to the entire crystal system is J = [F dt. If the
conduction electron were free (m* = m), the total momentum imparted to

the crystal system by the impulse would appear in the change of momentum of

the conduction electron: : _ — :
Without interaction with the crystal potential

J = Apyy = Apg = RAk . (10)

The neutral crystal suffers no net interaction with the electric_field, either
directly or indirectly through the free electron.

If the conduction electron interacts with the periodic potential of the crys-

tal lattice, we must have With interaction with the crystal potential
)= APtot = APlat + APel : (11)

From the result (9) for p.; we have

Apy = Ak + 3 AG[(Vi|C(k + G)]P) - AK] . (12)
G



The change Apy, in the lattice momentum resulting from the change of
state of the electron may be derived by an elementary physical consideration.
An electron reflected by the lattice transfers momentum to the lattice. If an
incident electron with plane wave component of momentum #k is reflected
with momentum #(k + G), the lattice acquires the momentum —#AG, as re-
quired by momentum conservation. The momentum transfer to the lattice

when the state Yy goes over to i, zy is

Apra: = —ﬁ; G[(Vi[C(k + G)[* - AK] , (13)

because the portion
VilCk + G)?- Ak foragiven G (14)

of each individual component of the initial state is reflected during the state

change Ak. Then, summation over all possible G
The total momentum change is therefore

Apel F A_Plat = J = hAk = (].5)

exactly as for free electrons, Eq. (10). Thus from the definition of J, we have

hdk/dt = F (16)

derived in (5) by a different method. A rigorous derivation of (16) by an en-
tirely different method is given in Appendix E.



